- EPC Storage Tanks
- Commissioning And Maintenance
- Mechanical Pipe Fabrication And Erection Works
- Mechanical Equipment & Module Works, Assembly & Erection

STALKEN SEA PRIVATEL

- Structural Steel Works
- Fire Proofing, Carboline (USA) Products

### **Group Structure**



- Mechanical Works ٠
- Structural Steel Works ٠
- Equipment & Module Erection ٠
- Fire Proofing, Carboline •



Potchanat Ngamlomyoung Managing Director



William Koh Director



The Companion Corporation Co Ltd (TCC)





Company

Thailand

Cital SRL, Italy

KPW Singapore Pte Ltd



Potchanat Marco Menini Ngamlomyoung Managing Director



William Koh Director

Storage Tank, EPC ٠

### Alliance Partners, Italy, Thailand & Singapore



Cital SRL, Italy



The Companion Corporation Co Ltd (TCC), Thailand



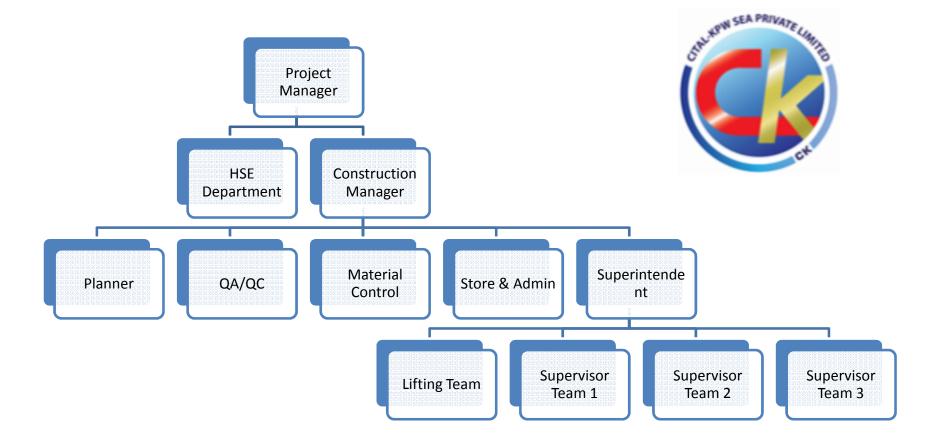
The Companion Attitude Company Maintenance Limited (ATD), Thailand Limited (TCM),



Cital SG Pte Ltd. Singapore



Director


**KPW Singapore** Pte Ltd



Cital-KPW SEA Pte Ltd, South East Asia



### **Organization chart Tankage**



### Main Areas of Business Process Industries Sectors - Tuas and Jurong Island

Process Mechanical Works (Process & Utilities) Including:

- Design, Engineering, Supply, Construction & Testing of Storage Tanks
- Piping Works, Fabrication & Installation
- Equipment, Cooling Tower And Module, Assembly & Erection
- Plant Maintenance & Shutdown
- Structural & General Steel, Fabrication & Installation
- Fire Proofing, Carboline Products

### Serving Process Industry Clients & Plants In

- Chemical
- Pharmaceutical & Bio-Medical
- Petrochemical & Refinery
- Food Processing
- Environmental



# We cover.. The EPC

### • Storage Tanks

- Off-site 4-tanks concurrent erection, top-down construction method
- <u>Safe working height maintain at 2m from the ground</u>
- Automatic lazer welding sychronised plasma cutting
- <u>55-60% reduction in manpower</u>
- <u>Costs saving</u>



# We also cover.. The "C" in EPC

- Piping Fabrication and Erection
- Equipment Installation
- Prefabricated Module Installation
- Structural Steel Fabrication and Erection
- Fire Proofing, Carboline (USA) Products





### *At A Glance Our Plans*

- Innovation and Automation For To Achieve Utmost Safety, Quality and Productivity
- Increase Turnover to S\$20 mil
- Maintain The Good Safety Records
- To Integrate Our Platform With Our Alliance Partners
- To Expand Our Clients And Industries Base
- To Expand Regionally In South East Asia



## **Automation Vs Conventional**

### Automation, Coil/Plates with Crane

- ✓ Fast erection; top-down and <u>4 concurrent complete tanks</u> erection
- Automatic lazer welding sychronised plasma cutting and final brushdown at butt joint (eliminate conventional cut and bevelling);
- <u>Good quality with proven</u> <u>good mechanical tests</u> <u>results</u>
- Safe work height maintains at 2m throughout the erection
- ✓ <u>50% to 60% workforce</u> reduction
- <u>Costs saving. Stainless steel</u> <u>tanks eliminate painting and</u> <u>scaffolding and reduce long</u> <u>term maintenance costs</u>
- Independent planning from civil works

### Automation, Coil with hydraulic jacks

- Best solution for space constrained site
- ✓ Good solution for tank with thickness
  > 15 mm
  - Same advantages as Automated, Coil/Plates with Crane option

### Conventional, Plates with Crane

- Best solution for space constrained site
- Manual Weldings
- Labour intensive works
- More safety related issue due to more manpower
- Less productive
- Quality of works are dependent on prevailing skills of welders
- Slower construction period
- Carbon steel tanks will incur more costs in painting, scaffolding and craneage



### Safety, Quality, Productivites And Costs Savings

| 1     | Continious Roll Out, Plasma Bevelling And Auto Welding Method |                                                        |                              |  |  |
|-------|---------------------------------------------------------------|--------------------------------------------------------|------------------------------|--|--|
| 1     | Constructibility And Maximum Perimeter/Congifuration          |                                                        |                              |  |  |
| 1.01  | Maximum Size of the Tank                                      | 22                                                     | m dia                        |  |  |
| 1.02  | Maximum Height                                                | NO LIMITATION                                          | m                            |  |  |
| 1.03  | Maximum Thickness(Tank Wall)                                  | 12                                                     | mm (25mm in development)     |  |  |
| 1.04  | Usage of Tank                                                 | Wide range from food to high valued chemical<br>medium |                              |  |  |
| 1.041 | Controlled Weld Joints                                        | 1                                                      | horizontal joint per ring    |  |  |
| 1.042 | Controlled Weld Joints                                        | 1                                                      | vertical joint(ring to ring) |  |  |
| 1.05  | Joint Preparation and Weld Joints                             | Plasma Welding (no bevelling required)                 |                              |  |  |

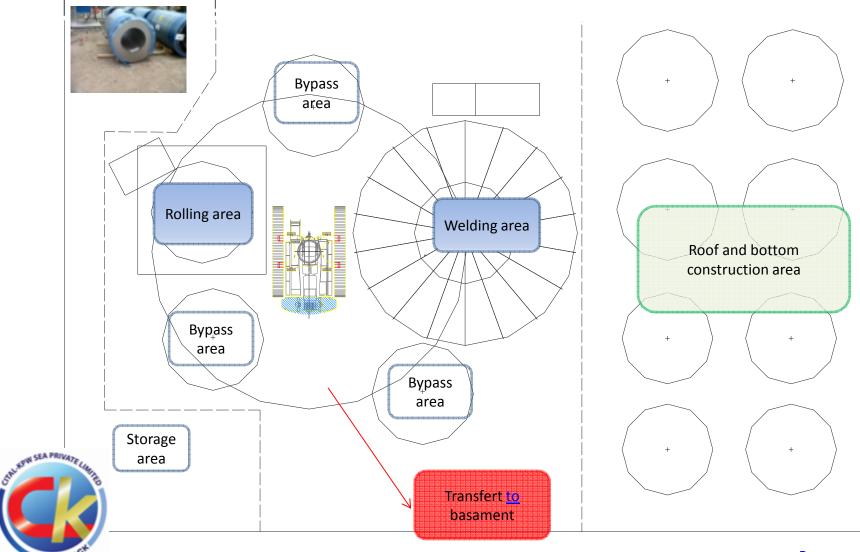


#### 3 EXAMPLE OF CONSTRUCTION METHODOLOGY COMPARISON

| 3.01 | Comparison With Conventional Tank Construction |      |       |
|------|------------------------------------------------|------|-------|
| 3.02 | No of Tank                                     | 25   | no    |
| 3.03 | Average Thickness                              | 5.8  | mm    |
| 3.04 | Average Size                                   | 6.85 | m Dia |
| 3.05 | Average Height                                 | 13.8 | m     |

| 3.11  | Headers                                          | Continious Roll Out, Plasma Bevelling And Auto<br>Welding Method                                      | Conventional Plate-By-By Manual Bevelling and Welding                                                                                                                                 |
|-------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.111 | Code                                             | API650                                                                                                | API650                                                                                                                                                                                |
| 3.112 | Material                                         | Stainless Steel                                                                                       | Carbon Steel                                                                                                                                                                          |
| 3.113 | Plates                                           | Single Continuous Plate Per Ring                                                                      | 6m Length Per Piece, Conventional Rolled Out, More than<br>one plate To Form One Ring                                                                                                 |
| 3.114 | Safety-Working Height                            | 1.2 to 2m from the Ground (Always At Low Level)                                                       | 13.8 m (top level) Follow The Height Of Construction                                                                                                                                  |
| 3.115 | Safety-Construction Method                       | Top Down Construction (Minimize Working At Height)                                                    | Bottom Up Construction (Exposure To Working At Height<br>Risks)                                                                                                                       |
| 3.116 | QA/QC-Horizontal Weld (Ring to Ring)             | Concurrent Automation (bevelling<br>and lazer weld)                                                   | 5 Manual bevelling and manual welding                                                                                                                                                 |
| 3.117 | QA/QC-Vertical Weld Per Ring                     | 1 Double Sided Weld (tandem welding)                                                                  | 1 Single Sided Weld                                                                                                                                                                   |
| 3.118 | QA/QC-Weld Quality                               | Better and Consistent Weld Quality                                                                    | Conventional Quality Depend On Skill Of Welder                                                                                                                                        |
| 3.119 | QA/QC-Concurrent Multiple Tank Construction      | 4 to 5 Tanks Concurrently ("Conveyor Belt System"),<br>Better QA/QC                                   | 1 At A Time, Highly Dependent Of Workers Skill And Source                                                                                                                             |
| 3.12  | QA/QC-Locality of Tank Construction              | Built Off Site/At Temporary Laydown Area/Yards                                                        | At Final Tank location. If base foundation are not ready<br>erection cannot start.                                                                                                    |
| 3.121 | QA/QC-Civil and Other Associated Works           | More Focus and Better Quality                                                                         | Tight Schedule Works, More Risks In QA/QC                                                                                                                                             |
| 3.122 | Productivity-Construction Schedule               | Concurrent Activites for Tankage, Civil and Other<br>Associated Works, Shorter Period                 | Tight Schedule Works, Bottle Neck And Possible Delays                                                                                                                                 |
| 3.123 | Productivity-Manpower                            | 70 to 80 Workforce                                                                                    | 250 to 300 Workforce                                                                                                                                                                  |
| 3.124 | Cost Savings - Less Costs , HR And Social Issues | Less Manpower, Less MYE, Less Levies, Less<br>Accomodation, Transportation And Welfare For<br>Workers | More Costs and More HR Issues                                                                                                                                                         |
| 3.125 | Cost Savings - Scaffolding                       | Reduced height of working and standing time of the<br>scaffolding, less costs                         | Conventional Full Height Scaffolding And Standing Time,<br>More Costs                                                                                                                 |
| 3.126 |                                                  | Top Down Construction Reduce Requirement of<br>Massive Scaffolding Requirements and Coordination      | Bottom Up Construction, More Scaffoldings And Height<br>Requirement and Coordination                                                                                                  |
| 3.127 | Cost Savings-Painting And Repainting             | Stainless Steel Tanks Requires Much Lesser<br>Maintenance And Costs Thereof                           | Carbon Steel Requires More Routine Maintenance,<br>Repainting And Costs Thereof. If Compare With Stainless<br>Steel Convetional Method, Costs of Conventional Method<br>Are Much More |
| 3.128 | Maintenance                                      | Stainless Steel Tanks Requires Much Lesser<br>Maintenance And Costs Thereof                           | Carbon Steel Requires More Routine Maintenance,<br>Repainting And Costs Thereof. If Compare With Stainless<br>Steel Convetional Method, Costs of Conventional Method                  |

# **TOP to BOTTOM No 4 TANKS**




15 TET 17 1



18.11.2015

## Typical layout of the working area



Power



## MATERIALS

### **Stainless Steel**

- 304L,
- 316L,
- 316Ti,
- SAF2205,
- SAF2507,
- 904L,
- C276,
- LDX2101 this material has a high tensil stress so it is possible recover a lot of weight into construction on large SS tanks



# ROLLING & ASSEMBLING STATION

29.10.2

N SEA PRIVATE

# ROLLING & ASSEMBLING STATION

NIKEW SEA PRIVATE LIAN



### **WELDING STATION**









## **BOTTOM PLATE & ACCESSORIES**











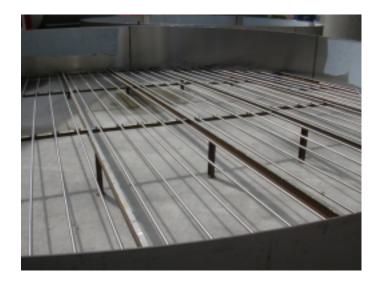


# **TANK TRANSPORTATION**





## **PAINTING & INSULATION**






### **SOLUTION FOR HEATING COIL**


### Solid plates and coiling

External coil External half-pipe



**Dimple type plates** Shell plates Internal baffles





